Copied to
clipboard

?

G = C4225D10order 320 = 26·5

25th semidirect product of C42 and D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4225D10, C10.1422+ (1+4), C4⋊C417D10, C4⋊D205C2, (C4×C20)⋊2C22, C42D2038C2, C422D51C2, C422C28D5, C22⋊D2028C2, D10⋊D446C2, (C2×D20)⋊10C22, C22⋊C4.41D10, (C2×C20).195C23, (C2×C10).255C24, C10.D45C22, D10.13D444C2, C2.67(D48D10), D10⋊C424C22, C23.61(C22×D5), C54(C22.54C24), (C22×C10).69C23, (C23×D5).70C22, C22.276(C23×D5), (C2×Dic5).131C23, (C22×D5).114C23, (C2×C4×D5)⋊28C22, (C5×C4⋊C4)⋊34C22, (C5×C422C2)⋊10C2, (C2×C4).211(C22×D5), (C2×C5⋊D4).75C22, (C5×C22⋊C4).80C22, SmallGroup(320,1383)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C4225D10
C1C5C10C2×C10C22×D5C23×D5C22⋊D20 — C4225D10
C5C2×C10 — C4225D10

Subgroups: 1254 in 252 conjugacy classes, 91 normal (16 characteristic)
C1, C2 [×3], C2 [×6], C4 [×9], C22, C22 [×22], C5, C2×C4 [×6], C2×C4 [×6], D4 [×12], C23, C23 [×8], D5 [×5], C10 [×3], C10, C42, C22⋊C4 [×3], C22⋊C4 [×9], C4⋊C4 [×3], C4⋊C4 [×3], C22×C4 [×3], C2×D4 [×12], C24, Dic5 [×3], C20 [×6], D10 [×19], C2×C10, C2×C10 [×3], C22≀C2 [×3], C4⋊D4 [×6], C22.D4 [×3], C422C2, C422C2, C41D4, C4×D5 [×3], D20 [×9], C2×Dic5 [×3], C5⋊D4 [×3], C2×C20 [×6], C22×D5 [×2], C22×D5 [×3], C22×D5 [×3], C22×C10, C22.54C24, C10.D4 [×3], D10⋊C4 [×9], C4×C20, C5×C22⋊C4 [×3], C5×C4⋊C4 [×3], C2×C4×D5 [×3], C2×D20 [×9], C2×C5⋊D4 [×3], C23×D5, C4⋊D20, C422D5, C22⋊D20 [×3], D10⋊D4 [×3], D10.13D4 [×3], C42D20 [×3], C5×C422C2, C4225D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C24, D10 [×7], 2+ (1+4) [×3], C22×D5 [×7], C22.54C24, C23×D5, D48D10 [×3], C4225D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=d2=1, ab=ba, cac-1=a-1b2, dad=ab2, cbc-1=a2b, dbd=a2b-1, dcd=c-1 >

Smallest permutation representation
On 80 points
Generators in S80
(1 51 6 41)(2 57 7 47)(3 53 8 43)(4 59 9 49)(5 55 10 45)(11 56 16 46)(12 52 17 42)(13 58 18 48)(14 54 19 44)(15 60 20 50)(21 70 26 73)(22 79 27 66)(23 62 28 75)(24 71 29 68)(25 64 30 77)(31 76 36 63)(32 69 37 72)(33 78 38 65)(34 61 39 74)(35 80 40 67)
(1 36 16 29)(2 32 17 25)(3 38 18 21)(4 34 19 27)(5 40 20 23)(6 31 11 24)(7 37 12 30)(8 33 13 26)(9 39 14 22)(10 35 15 28)(41 76 56 71)(42 64 57 69)(43 78 58 73)(44 66 59 61)(45 80 60 75)(46 68 51 63)(47 72 52 77)(48 70 53 65)(49 74 54 79)(50 62 55 67)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 9)(2 8)(3 7)(4 6)(5 10)(11 19)(12 18)(13 17)(14 16)(15 20)(21 32)(22 31)(23 40)(24 39)(25 38)(26 37)(27 36)(28 35)(29 34)(30 33)(41 44)(42 43)(45 50)(46 49)(47 48)(51 54)(52 53)(55 60)(56 59)(57 58)(61 63)(64 70)(65 69)(66 68)(71 79)(72 78)(73 77)(74 76)

G:=sub<Sym(80)| (1,51,6,41)(2,57,7,47)(3,53,8,43)(4,59,9,49)(5,55,10,45)(11,56,16,46)(12,52,17,42)(13,58,18,48)(14,54,19,44)(15,60,20,50)(21,70,26,73)(22,79,27,66)(23,62,28,75)(24,71,29,68)(25,64,30,77)(31,76,36,63)(32,69,37,72)(33,78,38,65)(34,61,39,74)(35,80,40,67), (1,36,16,29)(2,32,17,25)(3,38,18,21)(4,34,19,27)(5,40,20,23)(6,31,11,24)(7,37,12,30)(8,33,13,26)(9,39,14,22)(10,35,15,28)(41,76,56,71)(42,64,57,69)(43,78,58,73)(44,66,59,61)(45,80,60,75)(46,68,51,63)(47,72,52,77)(48,70,53,65)(49,74,54,79)(50,62,55,67), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,9)(2,8)(3,7)(4,6)(5,10)(11,19)(12,18)(13,17)(14,16)(15,20)(21,32)(22,31)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,33)(41,44)(42,43)(45,50)(46,49)(47,48)(51,54)(52,53)(55,60)(56,59)(57,58)(61,63)(64,70)(65,69)(66,68)(71,79)(72,78)(73,77)(74,76)>;

G:=Group( (1,51,6,41)(2,57,7,47)(3,53,8,43)(4,59,9,49)(5,55,10,45)(11,56,16,46)(12,52,17,42)(13,58,18,48)(14,54,19,44)(15,60,20,50)(21,70,26,73)(22,79,27,66)(23,62,28,75)(24,71,29,68)(25,64,30,77)(31,76,36,63)(32,69,37,72)(33,78,38,65)(34,61,39,74)(35,80,40,67), (1,36,16,29)(2,32,17,25)(3,38,18,21)(4,34,19,27)(5,40,20,23)(6,31,11,24)(7,37,12,30)(8,33,13,26)(9,39,14,22)(10,35,15,28)(41,76,56,71)(42,64,57,69)(43,78,58,73)(44,66,59,61)(45,80,60,75)(46,68,51,63)(47,72,52,77)(48,70,53,65)(49,74,54,79)(50,62,55,67), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,9)(2,8)(3,7)(4,6)(5,10)(11,19)(12,18)(13,17)(14,16)(15,20)(21,32)(22,31)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,33)(41,44)(42,43)(45,50)(46,49)(47,48)(51,54)(52,53)(55,60)(56,59)(57,58)(61,63)(64,70)(65,69)(66,68)(71,79)(72,78)(73,77)(74,76) );

G=PermutationGroup([(1,51,6,41),(2,57,7,47),(3,53,8,43),(4,59,9,49),(5,55,10,45),(11,56,16,46),(12,52,17,42),(13,58,18,48),(14,54,19,44),(15,60,20,50),(21,70,26,73),(22,79,27,66),(23,62,28,75),(24,71,29,68),(25,64,30,77),(31,76,36,63),(32,69,37,72),(33,78,38,65),(34,61,39,74),(35,80,40,67)], [(1,36,16,29),(2,32,17,25),(3,38,18,21),(4,34,19,27),(5,40,20,23),(6,31,11,24),(7,37,12,30),(8,33,13,26),(9,39,14,22),(10,35,15,28),(41,76,56,71),(42,64,57,69),(43,78,58,73),(44,66,59,61),(45,80,60,75),(46,68,51,63),(47,72,52,77),(48,70,53,65),(49,74,54,79),(50,62,55,67)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,9),(2,8),(3,7),(4,6),(5,10),(11,19),(12,18),(13,17),(14,16),(15,20),(21,32),(22,31),(23,40),(24,39),(25,38),(26,37),(27,36),(28,35),(29,34),(30,33),(41,44),(42,43),(45,50),(46,49),(47,48),(51,54),(52,53),(55,60),(56,59),(57,58),(61,63),(64,70),(65,69),(66,68),(71,79),(72,78),(73,77),(74,76)])

Matrix representation G ⊆ GL8(𝔽41)

22810120000
133910100000
002130000
0028390000
0000113200
000093000
0000001132
000000930
,
1028240000
0113280000
004000000
000400000
00001132390
0000930039
000000309
0000003211
,
4035000000
635000000
3214660000
14323510000
000040700
000034700
00001114134
00002727734
,
10000000
3540000000
92735350000
27304060000
000040000
000034100
00001132400
00002730341

G:=sub<GL(8,GF(41))| [2,13,0,0,0,0,0,0,28,39,0,0,0,0,0,0,10,10,2,28,0,0,0,0,12,10,13,39,0,0,0,0,0,0,0,0,11,9,0,0,0,0,0,0,32,30,0,0,0,0,0,0,0,0,11,9,0,0,0,0,0,0,32,30],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,28,13,40,0,0,0,0,0,24,28,0,40,0,0,0,0,0,0,0,0,11,9,0,0,0,0,0,0,32,30,0,0,0,0,0,0,39,0,30,32,0,0,0,0,0,39,9,11],[40,6,32,14,0,0,0,0,35,35,14,32,0,0,0,0,0,0,6,35,0,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,40,34,11,27,0,0,0,0,7,7,14,27,0,0,0,0,0,0,1,7,0,0,0,0,0,0,34,34],[1,35,9,27,0,0,0,0,0,40,27,30,0,0,0,0,0,0,35,40,0,0,0,0,0,0,35,6,0,0,0,0,0,0,0,0,40,34,11,27,0,0,0,0,0,1,32,30,0,0,0,0,0,0,40,34,0,0,0,0,0,0,0,1] >;

47 conjugacy classes

class 1 2A2B2C2D2E···2I4A···4F4G4H4I5A5B10A···10F10G10H20A···20L20M···20R
order122222···24···44445510···10101020···2020···20
size1111420···204···4202020222···2884···48···8

47 irreducible representations

dim11111111222244
type++++++++++++++
imageC1C2C2C2C2C2C2C2D5D10D10D102+ (1+4)D48D10
kernelC4225D10C4⋊D20C422D5C22⋊D20D10⋊D4D10.13D4C42D20C5×C422C2C422C2C42C22⋊C4C4⋊C4C10C2
# reps111333312266312

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{25}D_{10}
% in TeX

G:=Group("C4^2:25D10");
// GroupNames label

G:=SmallGroup(320,1383);
// by ID

G=gap.SmallGroup(320,1383);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,219,184,1571,570,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=d^2=1,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d=a*b^2,c*b*c^-1=a^2*b,d*b*d=a^2*b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽